
BENCHMARKING ESSENTIAL
GRAPH QUERIES

Renzo Angles

1st Workshop on Graph-based Technologies and Applications (Graph-TA)
Barcelona, February 19, 2013

Assistant Professor, Universidad de Talca (Chile)
Post-doc, Vrije University Amsterdam

Motivation

•  Increasing amount of graph data
• NOSQL databases => Graph (oriented) databases
• What is the most suitable graph database?

•  Theoretical comparison (complexity and expressive power)
•  Empirical comparison (performance, usability, etc.)
•  Benchmarks (there is not a standard one)
•  The application domain is very important

• Our work
•  Empirical comparison of loading and querying data at low-scale

(1K, 100K, 500K, 1M)
•  Experience on using several graph databases

Benchmark use case

•  12 essential graph queries
•  Attribute searching (Get people with a given name)
•  Node/edge adjacency (Get people that likes a given Web page)
•  Fixed-length paths (Get the friends of the friends of a given person)
•  Reachability (Is there a “friend” connection between two people?)
•  Pattern matching (Get the common friends between two people)
•  Aggregates (Get the number of friends of a given person)

Person WebPage Like

Friend

ID
name

age
location

ID
url

creation

0

0,5

1

1,5

2

2,5

3

Time (m)

0

100

200

300

400

500

Time(m)

Data loading test
N=1.000 E=5.874

0

500

1000

1500

2000

2500

3000

4Store Bigdata Dex Neo4j Postgres Virtuoso

Time (m)

0

20

40

60

80

100

120

Dex Neo4j Postgres

Time (m)

N=100.000 E=1.002.216

N=500.000 E=5.735.332 N=1.000.000 E=12.094.498

Expressing graph queries
Get the friends of a person identified by id 10

Dex long person_id = dex_graph.findObject(pid, dexvalue.setLong(10)):
dex_graph.neighbors(person_id, friend, EdgesDirection.Outgoing);

InfiniteGraph Person person = this.findPersonById(10);
Iterator<VertexHandle> it = person.getNeighbors().iterator();
while (it.hasNext()) { … }

Neo4j START p=node:peopleIdIndex(id=10)
MATCH p-[:friend]->f RETURN f

OrientDB SELECT FROM ographvertex WHERE
in[label='friend'].out in (select rid from index:personIdx where key = 10)

SPARQL SELECT ?friend WHERE { ?person <http://sn.org/voc/person#id> 10 .
 ?person <http://sn.org/voc/friend> ?friend }

Data querying test (12 queries x 100 instances)

0

0,5

1

1,5

2
Time (m)

0
20
40
60
80

100
120
140

Time(m)

0

100

200

300

400

500

4Store Bigdata Dex Neo4j Postgres Virtuoso

Time (m)

0

0,5

1

1,5

2

2,5

3

Dex Neo4j Postgres

Time (m)

N=1.000 E=5.874 N=100.000 E=1.002.216

N=500.000 E=5.735.332 N=1.000.000 E=12.094.498

Conclusions

• We developed a benchmark for essential graph queries
• We present

•  our experience on using current graph databases
•  preliminary results of performance for loading and querying data

•  The comparison of current graph databases is not an
easy task
•  There are several approaches
•  Standards are required (e.g., a graph query language)

• Opportunity:
•  Research on foundations on graph data management
•  Development of benchmarks for graph databases
•  Use and testing of graph databases in real-life applications

