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Motivation

Complex networks: transportation, communication (WWW,
Internet, P2P, AdHoc), social, biological...

• Can be very large, even with millions of nodes, but usually
they are sparse.

• Dynamical (P2P, AdHoc, ...) -their topology change with
time.-

How would be possible to “store” them compactly ?

Can we create similar networks given some (a limited
number) parameters?



Reconstruction of Complex Networks
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Use graph invariants !

Order, size, radius, mean distance, average degree, chromatic number,

covering number, degree sequence, eccentricity sequence, betweenness

centrality, spectrum (adjacency, laplacian,...), etc.

For example, if we know that a certain graph has this
betweenness centrality (a measure of the load of its vertices:
fraction of all shortest paths that go through a given node):

{0, 2
5 ,

3
5 , , 0, 0, 0}

or if we know that a graph has as its Laplacian spectrum:
(eigenvalues of the Laplacian matrix of the graph L = A− D):

{0, 1, 1, 3, 3, 6}
Can we find the graphs ?
Is there only one graph with this BC / spectrum or are there many
or none ?
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From the spectrum to the graph

Spectrum: {0, 1, 1, 3, 3, 6}
(Eigenvalues of the Laplacian matrix, L = A− D, of the graph.)

We know that the graph has

• Order n = 6.

•
∑

i λi = 14 =
∑

v deg(v) = 2|E |. 7 edges.

• ∆ ≤ n−1
n λn = 5. δ ≥ n−1

n λ2 = 0.8333.

• Not regular.

•
• Problem: There are 156 graphs with 6 vertices, and 24

graphs among them with these same properties, but only one with
this exact spectrum. However, for n = 12 there are millions of
graphs for a given size and some bounds in the degrees.

Can we allways find the graph ?
Is there one unique graph with this spectrum or are there many ?
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From the betweenness centrality to a graph

The betweenness centrality of vertex w is βw = 1
(n−1)(n−2)

∑
u,v 6=w

σuv (w)
σuv

BC {0, 2
5 ,

3
5 , , 0, 0, 0}

• The graph has 6 vertices. There are 156 graphs with 6
vertices.

• Edges ? Degrees ? Connected ? Is it regular ? ..

•

12

3

4 5

6

12

3

4 5

6

Problem There are two graphs with this BC and they are not
isomorphic.

• In fact all (156) graphs with 6 vertices have diferent BC,
except this an another pair !
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Spectral characterization of graphs and their reconstruction.

Cospectral graphs.

cospectral with respect to the Laplacian matrix L = D − A

Two graphs with the same spectrum but topologically distinct.

|V | < 6 There are no cospectral graphs.
|V | = 6 there are 4 cospectral graphs (out from 156 graphs).
|V | = 7 there are 130 cospectral graphs (out from 1044 graphs).
|V | = 8 there are 1767 cospectral graphs (out from 12346 graphs),
etc.

The ratio cospectral vs. total number of graphs goes to zero with the order.

E.R. van Dam, W.H. Haemers. E. Spencer

There are too many possible graphs to explore (even with the
rectrictions that come from theoreical studies). NP-complete
problem ! Combinatorial optimization methods are useful.
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Graphs reconstruction using their betweenness centrality.

Graphs with the same BC.

12

3

4 5

6

12

3

4 5

6

Non isomorphic with the same betweenness centrality.

|V | < 6 there are no graphs.
|V | = 6 there are 2 pairs (out from 156 graphs).
|V | = 7 there are 15 pairs (out from 1044 graphs).
|V | = 8 there are 92 pairs (out from 12346 graphs).

The number of on isomorphic graphs with the same BC seems to increase rapidly with
the order of the graph, but the fraction is very small.

Hence, two graphs with the same BC would indeed be isomorphic with a high
probability.

Given a BC which corresponds to a graph, is it an NP-complete problem to find it?

Combinatorial optimization methods will certainly be useful !
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Reconstruction algorithms: Simulated Annealing and Tabu Search.

Efficiency versus effectiveness

Efficiency

Combinatorial Unimodal Multimodal

Problem Type

 Heuristic method

Robust scheme

Exhaustive or 
Random search

We look for robust schemes such that they may be used for a wide
range of problems:
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Reconstruction algorithms: Simulated Annealing and Tabu Search.

The main problem is to find the global maximum.
We should prove that, with a high probability, the method finds
solutions not far from this maximum.

E. Aarts, K. Lenstra, (Eds.), Local Search in Combinatorial Optimization. John Wiley

& Sons. Ltd. Chichester, 1997.
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Reconstruction algorithms: Simulated Annealing and Tabu Search.

Simulated annealing / Metropolis algorithm

Classical meethod inspired by cristalization processes.

• N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E.
Teller, J. Chem. Phys., 21, 1087, 1953.

• S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by
Simulated Annealing. Science, 220, 671-680, 1983.
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Reconstruction algorithms: Simulated Annealing and Tabu Search.

Simulated annealing

1 Generate an initial random graph. Fix T0 and Tmin.

2 Repeat Nk times.

1 Modify the graph and find new cost.
2 If better, accept it as current solution.
3 If worse, accept only if e−∆ε/KTk > rand()

3 Lower Tk and repeat 2 until Tk < Tmin

Important parameters to adjust are: T0,Nk , and the cooling rate α
from Tk+1 = αTk .
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Reconstruction algorithms: Simulated Annealing and Tabu Search.

Tabu search

The main idea is to perform a greedy search avoiding repetition of
steps. Keeps a list which is updated at every step removing the
oldest elements and allowing a cost improvement and thus local
minima.

• F. Glover. Future paths for integer programming and links to
artificial intelligence. Comput. & Ops. Res. 13 (1986) 533–549.
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Reconstruction algorithms: Simulated Annealing and Tabu Search.

Tabu search

1 Generate an initial random graph. Tabu list empty.

2 Repeat until stop criterion

1 Select vertex at random and modify an edge not in tabu list.
Compute cost.

2 If better, accept graph and add edge to tabu list.
3 If worse, undo modification and add edge to tabu list
4 Delete old items from tabu list.

The main parameter to adjust is the tabu list size. Note that
because of this list, modifications that improve the cost function
can be rejected.
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Experiments and results

Algorithm design.

Algorithm design.

• Generate an initial random graph with:
• Order n
• Size m

random n − 1 ≤ m ≤ n(n − 1) for BC reconstruction.

m =
∑

i λi/2 for spectral reconstruction.

• Connected.
Maximum and minimum degrees can be obtained from the

spectrum in the case of spectral reconstruction.

• Modification performed at each iteration step:
Link reconnections.

• Verify the “quality” of the graph (cost function)

• Compare the final graph with the reference (initial) graph.
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Experiments and results

Algorithm design.

Cost function for spectral reconstruction

The best cost function is:√√√√ n∑
i=0

(λ0
i − λt

i )2

Where λ0
i , 1 ≤ i ≤ n are the Laplacian eigenvalues of the reference graph and

λt
i those of the graph being tested.

We have also tested the following cost functions:

•
√∑n

i=1(i + 1)(λ0
i − λt

i )
2,

•
√∑n

i=1(n − i)(λ0
i − λt

i )
2,

•
√∑n

i=1 |λ0
i − λt

i |3,

•
√∑n

i=1 |λ0
i − λt

i |(n − 1)1.5.
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Experiments and results

Algorithm design.

Cost function for BC

We use

ε =
n∑

i=1

(β0
i − βt

i )2.

where {β0
1 , β

0
2 , . . . , β

0
n} is the BC of the reference graph and {βt

1, β
t
2, . . . , β

t
n} is

that of the graph being tested.

Other cost functions considered:

•
√∑n

i=0(β
0
i − βt

i )
2,

•
√∑n

i=0(i + 1)(β0
i − βt

i )
2,

•
√∑n

i=0(n − i)(β0
i − βt

i )
2,

•
√∑n

i=0 |β0
i − βt

i |3,

•
√∑n

i=0 |β0
i − λt

i |(n − 1)1.5.
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Experiments and results

Algorithm design.

How we can measure a distance between graphs ?
Singular values descomposition method.

SVD method introduced in M. Ipsen, A.S. Mikhailov..

A is the adjacency matrix of the graph.
U and V are unitary matrices.
Σ is the diagonal matrix of singular values.
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Experiments and results

Algorithm design.

Calculation of a distance between graphs.

Graphs G1,G2 with adjacency matrices A1,A2.
F = F (A1,A2) = U1Σ2V T

1 = U1UT
2 A2V2V T

1 .

If the graphs are isomorphic then A1 = F (A1,A2).

For a “good” reconstruction, F will have real values not far from the 1s and 0s of A1.
Introducing ∆ = A1 − F and the norm

δ =
1

n

√∑
i,j

∆2
ij

we obtain a measure for the distance between the two graphs.
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Algorithm design.

An example with values for δ
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Experiments and results

Programming

• C++ compiler Dev-C++

• PC (P4 CPU at 2.41 GHZ) Windows XP.

• Limited to 300 s per reconstruction.

• Average of 100 (Sp) - 500 (BC) reconstructions.
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Programming

Initial Graphs

Random Circulant Small-World (WS)

Scale-Free (BA) Clustered
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Experiments and results

Programming

Adjacency matrices of the reference graphs
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Results

A visualization for a reference graph and its reconstruction F

An example: Spectral reconstruction of a clustered graph using tabu

search.
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Random Circulant Small-world Scale-free Clustered

Ref. Recn. Ref. Recn. Ref. Recn. Ref. Recn. Ref. Recn.

Diameter avg. 6 6.4 12 9.7 9 7.9 4 4.1 5 5

Avg. dist. avg. 2.89 2.9 6.19 4.22 3.97 3.72 2.32 2.32 2.67 2.23

Degrees

min. 1 1 4 1 2 1 1 1 2 1

avg. 3.8 3.8 4 4 3.9 3.9 4.95 4.95 6.3 6.3

max. 8 8 4 5 6 6 17 17 13 13

Clustering avg. 0.20 0.22 0.7 0.73 0.53 0.49 0.23 0.19 0.37 0.22

δ avg. 0.02 0.08 0.04 0.02 0.08

Tabu search.
Results for the average of 100 reconstructions for each reference graph.

Spectrum (graph order): 40. Eigenvalue tolerance: 0.0001. Tabu list size: 400.

Tabu iterations after a change: 20.



Reconstruction of Complex Networks

Experiments and results

Results

1 10 20 30 40

1

10

20

30

40

1 10 20 30 40

1

10

20

30

40

1 10 20 30 40

1

10

20

30

40

1 10 20 30 40

1

10

20

30

40

1 10 20 30 40

1

10

20

30

40

1 10 20 30 40

1

10

20

30

40

1 10 20 30 40

1

10

20

30

40

1 10 20 30 40

1

10

20

30

40

1 10 20 30 40

1

10

20

30

40

1 10 20 30 40

1

10

20

30

40

Random Circulant Small-world Scale-free Clustered

Ref. Recn. Ref. Recn. Ref. Recn. Ref. Recn. Ref. Recn.

Diameter avg. 6 5.87 10 8.77 6 6.69 4 4.48 5 5.27

Avg. Dist. avg. 2.89 2.78 5.38 4.67 3.31 3.03 2.32 2.34 2.65 2.58

Degrees

min. 1 1.00 4 1.99 3 1.00 1 1.11 2 3.75

avg. 3.8 3.95 4 2.57 4 3.69 4.95 5.10 6.3 4.46

max. 8 10.00 4 3.87 5 6.19 17 15.76 13 14.65

Clustering avg. 0.2 0.20 0.5 0.03 0.32 0.12 0.26 0.26 0.37 0.20

Norm. BC avg. 0.05 0.05 0.11 0.10 0.06 0.05 0.04 0.04 0.04 0.04

δ avg. 0.03 0.07 0.03 0.02 0.08

Simulated annealing.
Results for the average of 500 reconstructions for each reference graph.
Graph order= 40, T0 = 1.0, N = 2000, Tmin = 0.000001, geometric cooling
rate Tk+1 = 0.9Tk .
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Conclusion

Given the Laplacian spectrum, or the betweenness centrality (BC),
the methods allows an exact reconstruction for graphs with less
than 14 vertices.

It is possible a “topological” reconstruction for any graph (tests
with graphs of order 2000 and size 20000).

Even if the spectrum does not correspond to a graph, the method
constructs a similar network topology. This can be used to generate
network models or even real topologies with specific properties as
traffic / load distributions (hubs, terminal nodes, etc. )


	Motivation
	Spectral characterization of graphs and their reconstruction.
	Graphs reconstruction using their betweenness centrality.
	Reconstruction algorithms: Simulated Annealing and Tabu Search.
	Experiments and results
	Algorithm design.
	Programming
	Results

	Conclusion

