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Mining Evolving Graph Data Streams

Problem
Given a stream D of graphs,

maintain the set of frequent closed subgraphs
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Frequent Closed Pattern Mining

Universe U of patterns
Subpattern partial order, denoted P � P ′

Support of a pattern P in a multiset D =
= fraction of D elements that are have P as subpattern
Pattern P is closed in D if every superpattern of P has
smaller support

The frequent closed pattern mining problem
Given D , find the set of closed patterns with support ≥ ε



The Data Stream Computation Model

Five constraints:

1 Input is sequence of items; t-th item available at time t
2 Answers must be anytime, may be approximate
3 Low processing time per item
4 Sublinear memory; keep only summaries or sketches
5 Data distribution evolves over time; forget, react, adapt



Previous work

CloseGraph [Yan-Han 03]
depth-first search, based on gSpan ICDM’02

MoSS [Borgelt-Berthold 05]
breadth-first search, based on MoFa ICDM’02

Non-streaming: Non-incremental, multipass, linear memory



Graph Coresets

Coreset of a set P with respect to some problem
Small subset that approximates the original set P

Solving the problem for the coreset provides an
approximate solution for the problem on P

δ -tolerance Closed Graph
A graph g is δ -tolerance closed if none of its proper frequent
supergraphs has a weighted support ≥ (1−δ ) ·support(g)

Maximal graph: 1-tolerance closed graph
Closed graph: 0-tolerance closed graph



Graph Coresets

Relative support of a closed graph
Support of a graph minus the relative support of its closed
supergraphs

The sum of the closed supergraphs’ relative supports of a
graph and its relative support is equal to its own support

(s,δ )-coreset for computing closed graphs
Weighted multiset of frequent δ -tolerance closed graphs with
minimum support s using their relative support as a weight



Dealing with evolution over time

Keep a window on recent stream elements
Actually, just its lattice of closed elements!

Keep track of number of closed trees in lattice, N
Use some change detector on N
When change is detected:

Drop stale part of the window
Update lattice to reflect this deletion, using deletion rule

Alternatively, sliding window of some fixed size



WINGRAPHMINER

WINGRAPHMINER(D,W ,min sup)

Input: A graph dataset D, a size window W and min sup.
Output: The frequent graph set G.

1 G← /0
2 for every batch bt of graphs in D
3 do C← CORESET(bt ,min sup)
4 Store C in sliding window
5 if sliding window is full
6 then R← Oldest C stored in sliding window,

negate all support values
7 else R← /0
8 G← CORESET(G∪C∪R,min sup)
9 return G



Experimental Evaluation

ChemDB dataset
Public dataset
4 million molecules
Institute for Genomics and Bioinformatics at the University
of California, Irvine

Open NCI Database
Public domain
250,000 structures
National Cancer Institute



Open NCI dataset

Time NCI Dataset
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Open NCI dataset

Memory NCI Dataset
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ChemDB dataset

Memory ChemDB Dataset
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ChemDB dataset

Time ChemDB Dataset
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ADAGRAPHMINER
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Summary

We provide three algorithms of increasing power:

Incremental
Sliding Window
Adaptive

To our knowledge, first algorithms for mining frequent (closed)
subgraphs from evolving data streams


