Mining Frequent Closed Graphs on Evolving Data Streams

A. Bifet, G. Holmes, B. Pfahringer and R. Gavaldà

University of Waikato Hamilton, New Zealand

Laboratory for Relational Algorithmics, Complexity and Learning, LARCA UPC-Barcelona Tech

1st Graph-TA Workshop, Feb. 19th, 2013 Originally presented at KDD'11

Mining Evolving Graph Data Streams

Problem

Given a stream \mathscr{D} of graphs, maintain the set of frequent closed subgraphs

Graph Dataset

Transaction Id	Graph	Weight
	0	
	C - C - <mark>S</mark> - N	
1	O	1
	0	
	C - C - <mark>S</mark> - N C	
2		1
	0	
	C <mark>S</mark> N	
3	O C - <mark>S</mark> - N C	1
	N	
4	C - C - <mark>S</mark> - N	1

Frequent Closed Pattern Mining

- Universe *U* of patterns
- Subpattern partial order, denoted $P \leq P'$
- Support of a pattern P in a multiset D =
 - = fraction of \mathcal{D} elements that are have P as subpattern
- Pattern P is closed in 𝒴 if every superpattern of P has smaller support

The frequent closed pattern mining problem

Given \mathscr{D} , find the set of closed patterns with support $\geq \epsilon$

The Data Stream Computation Model

Five constraints:

- Input is sequence of items; t-th item available at time t
- Answers must be anytime, may be approximate
- Output States and S
- Sublinear memory; keep only summaries or sketches
- Data distribution evolves over time; forget, react, adapt

Previous work

- CloseGraph [Yan-Han 03]
 - depth-first search, based on gSpan ICDM'02
- MoSS [Borgelt-Berthold 05]
 - breadth-first search, based on MoFa ICDM'02

Non-streaming: Non-incremental, multipass, linear memory

Graph Coresets

Coreset of a set *P* with respect to some problem

Small subset that approximates the original set P

• Solving the problem for the coreset provides an approximate solution for the problem on *P*

δ -tolerance Closed Graph

A graph *g* is δ -tolerance closed if none of its proper frequent supergraphs has a weighted support $\geq (1 - \delta) \cdot support(g)$

- Maximal graph: 1-tolerance closed graph
- Closed graph: 0-tolerance closed graph

Graph Coresets

Relative support of a closed graph

Support of a graph minus the relative support of its closed supergraphs

• The sum of the closed supergraphs' relative supports of a graph and its relative support is equal to its own support

(s, δ) -coreset for computing closed graphs

Weighted multiset of frequent δ -tolerance closed graphs with minimum support *s* using their relative support as a weight

Dealing with evolution over time

- Keep a window on recent stream elements
 - Actually, just its lattice of closed elements!
- Keep track of number of closed trees in lattice, N
- Use some change detector on N
- When change is detected:
 - Drop stale part of the window
 - Update lattice to reflect this deletion, using deletion rule

Alternatively, sliding window of some fixed size

WINGRAPHMINER

WINGRAPHMINER(*D*, *W*, *min_sup*)

Input: A graph dataset D, a size window W and min_sup . Output: The frequent graph set G.

```
G \leftarrow \emptyset
1
2
     for every batch b<sub>t</sub> of graphs in D
3
            do C \leftarrow CORESET(b_t, min\_sup)
                 Store C in sliding window
4
5
                 if sliding window is full
                    then \overline{R} \leftarrow \text{Oldest } C stored in sliding window,
6
                                 negate all support values
7
                    else \overline{R} \leftarrow \emptyset
                 G \leftarrow \text{CORESET}(G \cup C \cup \overline{R}, \min_{sup})
8
9
     return G
```

Experimental Evaluation

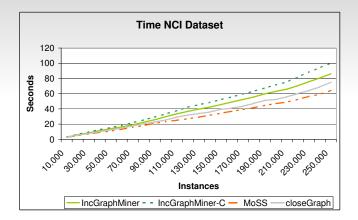
ChemDB dataset

- Public dataset
- 4 million molecules
- Institute for Genomics and Bioinformatics at the University of California, Irvine

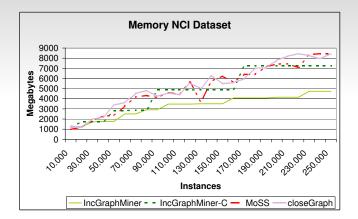
Open NCI Database

- Public domain
- 250,000 structures
- National Cancer Institute

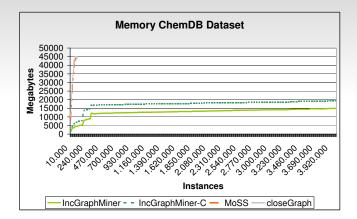
Open NCI dataset



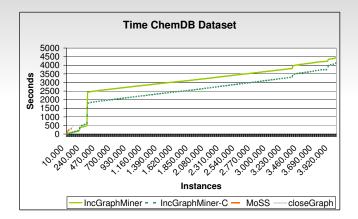
Open NCI dataset



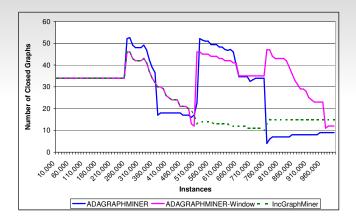
ChemDB dataset



ChemDB dataset



ADAGRAPHMINER



We provide three algorithms of increasing power:

- Incremental
- Sliding Window
- Adaptive

To our knowledge, first algorithms for mining frequent (closed) subgraphs from evolving data streams