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Dynamical social networks

• Networks have been used since long to characterize social systems 
(1934, J. Moreno)

• Many insights have been obtained, by looking at the topological 
properties of social networks

! Small diameter, long tailed distributions, high clustering, community 
structure, etc

• Most previous considerations have focused on static social networks, in 
which vertices and edges do not change in time

! Approximately correct in certain cases: citation networks 

• Social interaction networks are however intrinsically dynamic, edges 
being a succession of contact or communication events, which are 
constantly created or terminated between pairs of individuals (actors)

! Static networks being an integrated projection of dynamical ones

• The temporal dimension of social networks has important consequences

! Epidemic spreading, usually considered on static networks



Effects of network dynamics on epidemics

• Key point: You are not in contact with all your friends simultaneously

• Imagine three individuals: Anne, Bob and Carol

• Anne has a contact with Bob and Bob has a contact with Carol

• In a simple network interpretation, if Ann has a disease, she can pass it 
to Carol

• Adding a temporal dimension, the timing of the contacts matters

! If t2 < t1, then Carol cannot catch the disease!

A B C

A B C
t1 t2



Empirical analysis of dynamical social networks

• The empirical measurement of social interactions is a non-trivial task

! Classically, it was performed by means of personal interviews and 
questionnaires

" Expensive, time consuming, unreliable

• Recent technological advances have made possible the real-time 
tracking of social interactions in groups of individuals, at several 
temporal and spatial scales 

! E-mail exchanges

! Mobile phone communications

• Here we focus on a cheap, largely scalable and high-resolution method:

! The SocioPatterns project



The SocioPatterns Project

• Measure of the contact patterns of a group of interacting 
individuals in a spatially bounded setting, such as a set of 
offices or a conference. The participants are asked to carry 
small RFID tags (beacons). These beacons continuously 
broadcast small data packets which are received by a 
number of stations and relayed through a local network to 
a server

• Tags exchange low power messages in a peer-to-peer 
fashion to sense their neighborhood and assess directly 
contacts with nearby tags

• After the beacons detect a contact, they broadcast a report 
message at a higher power level. These reports are 
received by the stations and relayed to the monitoring 
infrastructure. The reports are stored with a time stamp, 
the id of the relaying station and the id of the tags which 
participate in the contact event

distinct persons. In other words, if A starts a contact with B at time
tAB, and then starts a different contact with C at tAC, the inter-
contact interval is defined as tAC - tAB. Measuring this quantity is
relevant for the study of causal processes (concurrency) that can
occur on the dynamical contact network, such as for example
information diffusion or epidemic spreading. The inter-contact
intervals determine the timescale after which an individual
receiving some information or disease is able to propagate it to
another individual. Thus, the interplay between this timescale and
the typical timescales of the spreading processes is crucial to
diffusion processes. The probability distributions of inter-contact
events show a broad tail across the three deployments, signaling
the absence of a characteristic timescale (see panel C of Figure 2).
Strikingly, and in contrast with the distributions of pair-wise
contact durations, these distributions expose differences between
deployments. In particular, the distribution of inter-contact
intervals turns out to be broader when short detection ranges

are considered (ISI and SFHH). In the context of spreading
processes this would imply that various ranges of possible
contamination would correspond to different distributions of times
between successive spreading events.
The combination of high resolution and scalability we achieved

allows us to address the crucial problem of the robustness of the
observed distributions. In Figures 3A, S2, S3, we show that the
same distributions are obtained not only across deployments, but
also within a single deployment, across different intervals of time
(from a few hours, to one full day, to the event as a whole).
Figure 3A also displays distributions of contact durations of
individual tags, showing that the observed heterogeneity of contact
durations in the population is present also at the individual level.
Moreover, in experiments involving the tracking of individuals’

behavior, technical difficulties and human factors can both act as
sources of data incompleteness. Participation is voluntary and not
all individuals agree to have their contacts tracked. People who

Figure 1. RFID sensor system and system deployments. A) Schematic illustration of the RFID sensor system. RFID tags are worn as badges by
the individuals participating to the deployments. A face-to-face contact is detected when two persons are close and facing each other. The
interaction signal is then sent to the antenna. B)C)D) Activity pattern measured in terms of the number of tagged individuals as a function of time in
the three deployments: B) ISI refers to the deployment in the offices of the ISI foundation in Turin, Italy, with 25 participants; C) 25C3 to the 25th Chaos
Communication Congress in Berlin, Germany, with 575 participants, and D) SFHH to the congress of the Société Française d’Hygiène Hospitalière,
Nice, France, with 405 participants. Dashed vertical lines indicate the beginning and end of each day. Typical daily rhythms are observed in the office
and conference settings. The ISI deployment allows us to recover the weekly pattern signaled by the absence of activity on the day of Sunday (the
number of persons larger than zero at night indicates the tags left in the offices, easily recognizable from the flat behavior).
doi:10.1371/journal.pone.0011596.g001
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FIG. 2: Left: photo of a beacon (Courtesy of M. Meriac [23]). Right: map of the experiment

premises. The circles denote the positions of the reporting stations.

experiment, some batteries failed and had to be replaced), some beacons disappeared from

the data for few hours. Moreover, beacons were obviously tracked only when within range

of the stations. We will see in the next section that, despite these issues corresponding

to sampling problems, the data analysis reveals interesting patterns and shows the large

potential of our experimental setup.

III. RESULTS OF THE PILOT STUDY

A. Contacts characterization

Let us first focus on the analysis of the contacts between individuals. We define as a

“contact event” between two beacons A and B the exchange of at least one data packet

between the two beacons in a 20s time-window. We then define as the duration of the

contact A-B the time during which packets are exchanged between them at least every

20s. The contact is considered as broken whenever more than 20s occur without a packet

exchange. The choice of a 20s window is based on the frequency with which packets are sent

by beacons, and corresponds to a reasonable time-scale for social interaction (e.g. encounter,

brief conversation, etc.). Given this definition, we can measure both the duration of each

contact and the intervals between two contacts. Figure 3(left) shows the distribution of

the contact durations obtained using the whole dataset collected during the four conference

days. A very broad distribution is observed, close to a power-law with exponent � −2.

7
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Output of SocioPatterns deployments

Figure 5. From RFID communications to contact networks. Top: Temporal aggregation of proximity relations reported by different tags over a
sliding window. The information collected by each tag is aggregated and translated into a dynamical adjacency matrix to reconstruct the dynamical
network of face-to-face interactions. Bottom: Real-time visualization. A snapshot of the visualization, displaying approximate position information as
well as the instantaneous network of face-to-face proximity. Individuals wearing an RFID tag are represented as discs labeled with the numeric
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Representation of dynamical network’s data
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Statistical properties of dynamical networks

• Contact sequence:

! Analysis of the patterns of 
interactions between agents

" Length of conversations !t

" Gap between conversations "

• Weighted integrated network:

! Topological properties of the weight 
pattern

" Weight # of edges (time 
conversing)

" Strength s (total time conversing)
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Contact sequence properties of face-to-face contacts

• Long-tailed distribution of conversation length and gaps 
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General property: “Burstiness” of human activity
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Darwin and Einstein correspondence patterns
These scientists prioritized their replies to letters in the same way that people rate their e-mails today.

In an era when letters were the main means of
exchanging scientific ideas and results, Charles
Darwin (1809–82) and Albert Einstein (1879–
1955) were notably prolific correspondents.
But did their patterns of communication differ
from those associated with the instant-access 
e-mail of modern times? Here we show that,
although the means have changed, the com-
munication dynamics have not: Darwin’s and
Einstein’s patterns of correspondence and
today’s electronic exchanges follow the same
scaling laws. However, the response times of
their surface-mail communication is described
by a different scaling exponent from e-mail
communication, providing evidence for a new
class of phenomena in human dynamics.

During their lifetimes, Darwin sent at least
7,591 letters and received 6,530; Einstein sent
more than 14,500 and received more than
16,200. We start from a record containing the
sender, recipient and the date of each letter1,2

sent or received by the two scientists. Their 
correspondence exploded after their rise to
fame, and reached a highly fluctuating pattern
afterwards (Fig. 1a). Although, on average, they
wrote 0.59 (Darwin) and 1.02 (Einstein) letters
a day during the last 30 years of their lives, these

averages hide significant daily fluctuations. For
example, Darwin wrote 12 letters on New
Year’s Day in 1874 and Einstein received 120
letters on 14 March 1949, his 70th birthday.

The response time, !, represents the time
interval between the date a letter was received
and the date that the reply was sent. As shown
in Fig. 1b,c, the probability that a letter will be
replied to in ! days is well approximated by a
power law, P(!)"!#$, where $%3/2. The fact
that the scaling spans close to four orders of
magnitude, from days to years, indicates that
most responses (53% for Einstein, 63% for
Darwin) were sent within less than ten days. 

In some cases, however, the correspondence
was stalled for months or years. Some of these
represent long breaks in the correspondence
and a few are a consequence of missing letters.
Others, however, correspond to genuine
delays, like Einstein’s response on 14 October
1921 to Ralph De Laer Kronig’s letter of
26 September 1920, which starts with: “In the
course of eating myself through a mountain of
correspondence I find your interesting letter
from September of last year.” 

To understand the origin of the observed
scaling behaviour, we have to realize that,

given the wide range of response
times, both Darwin and Einstein
must have prioritized correspon-
dence in need of a response. Thus,
a simple model of their correspon-
dence assumes that letters arrive at
a rate & and are answered at a rate
'. Each letter is assigned a priority,
with high-priority letters being
answered soon after their arrival,
and others having to wait. 

The waiting-time distribution 
of this simple model3 follows4

P(!)"!#3/2exp(#!/!0), which pre-
dicts a power-law waiting time for
the critical regime &%', when
!0%(. Given that Darwin and
Einstein answered only a fraction
of letters they received (their over-
all response rate being 0.32 and
0.24, respectively), we have &)'.
This places the model in the super-
critical regime, where a finite frac-
tion of letters are never answered.
Numerical simulations (see sup-
plementary information) indicate
that in this supercritical regime the
waiting-time distribution of the

responded letters also follows a power law with
exponent $%3/2, which is different from the
$%1 obtained for e-mail communications5.
Therefore, although the response times in 
e-mail and mail communications follow the
same scaling law, they belong to different uni-
versality classes.

The correspondence patterns of Einstein
and Darwin are examples of well mapped pat-
terns of human interaction, but are also of his-
torical interest. Their timely responses to most
letters show that they were both aware of the
importance of this intellectual intercourse.
Occasional delays were not always without
consequence. For example, on 14 October
1921 Einstein returned to a correspondence
with Theodor Kaluza that he had left off two
years earlier, when he discouraged Kaluza
from publishing one of his papers: having sec-
ond thoughts, he recommended that the paper
be submitted. Encouraged by this, Kaluza pub-
lished his famous paper on five-dimensional
unified field theory6, a key component of
today’s string theory. Would it have changed
the course of science if Einstein had not
wavered for two years? We shall never know.
But our results indicate that Darwin’s and Ein-
stein’s late responses or resumed correspon-
dences are not singularities or exceptions: they
are part of a universal scaling law7, represent-
ing a fundamental pattern of human dynamics
that the famous are no better at escaping than
the less distinguished.
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Figure 1 | The correspondence patterns of Darwin and Einstein.
a, Historical record of the number of letters sent (Darwin,
black; Einstein, green) and received (Darwin, red; Einstein,
blue) each year by the two scientists1,2. An anomalous drop in
Einstein’s correspondence marks the Second World War period
(1939–45, boxed). Arrows, birth dates of Darwin (left) and
Einstein (right). b, c, Distribution of response times to letters
by Darwin and Einstein, respectively. Note that both
distributions are well approximated with a power-law tail that
has an exponent $%3/2, the best fit over the whole data for
Darwin giving $%1.45*0.1 and for Einstein $%1.47*0.1.
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Distribution of response times between receiving a letter 
and answering it (Darwin-Einstein correspondence)

Distribution of time between 
consecutive e-mails sent

To provide direct evidence for non-Poisson activity patterns in
individual human behaviour, I study the communication between
several thousand e-mail users based on a data set capturing the
sender, recipient, time and size of each e-mail11–12. As Fig. 2a shows,
the distribution of the time differences between consecutive e-mails
sent by a selected user is best approximated with P(t) < t2a, where
a . 1, indicating that an individual’s e-mail pattern has a bursty
non-Poisson character: during a single session a user sends several
e-mails in quick succession, followed by long periods of no e-mail
activity. This behaviour is not limited to e-mail communications.
Measurements capturing the distribution of the time differences
between consecutive instant messages sent by individuals during
online discussions5 show a similar pattern. Professional tasks,
such as the timing of job submissions on a supercomputer6,
directory listing and file transfers (FTP request) initiated by
individual users7, or the timing of printing jobs submitted by
users13 were also reported to display non-Poisson features. Similar
patterns emerge in economic transactions, describing the time
interval distributions between individual trades in currency
futures8. Finally, heavy-tailed distributions characterize entertain-
ment-related events, such as the time intervals between consecu-

tive online games played by the same user14.
The fact that a wide range of human activity patterns follow non-

Poisson statistics suggests that the observed bursty character reflects
some fundamental and potentially generic feature of human
dynamics. Yet, the mechanism responsible for these marked non-
random features remains unknown. Here, I show that the bursty
nature of human dynamics is a consequence of a queuing process
driven by human decision making: whenever an individual is
presented with multiple tasks and chooses among them based on
some perceived priority parameter, the waiting time of the various
tasks will follow a Pareto distribution. In contrast, first-come-first-
serve and random task execution, common inmost service-oriented
or computer-driven environments, lead to uniform Poisson-like
dynamics.
Most human-initiated events require an individual to assess and

prioritize different activities. Indeed, at the end of each activity an
individual needs to decide what to do next—for example send an e-
mail, do some shopping, or make a telephone call—allocating time
and resources for the chosen activity. Consider an agent operating
with a priority list of L tasks. After a task is executed, it is removed
from the list, offering the opportunity to add another task. The
agent assigns to each task a priority parameter x, which allows it to
compare the urgency of the different tasks on the list. The question
is, how long will a given task have to wait before it is executed. The
answer depends on the method the agent uses to choose the task to
be executed next. In this respect three selection protocols10 are
particularly relevant for human dynamics.
(i) The simplest selection rule is the first-in-first-out protocol,

executing the tasks in the order that they were added to the list. This
is common in service-oriented process, such as the first-come-first-
serve execution of orders in a restaurant or getting help from
directory assistance and consumer support. The time period an
item stays on the list before execution is determined by the
cumulative time required to perform all tasks added to the list
before it. If the time necessary to perform the individual tasks are
chosen from a bounded distribution (that is, the second moment of
the distribution is finite), then the waiting time distribution will
develop an exponential tail, indicating that most tasks experience
approximately the same waiting time.
(ii) The second possibility is to execute the tasks in a random

order, irrespective of their priority or time spent on the list. This is
common, for example, in educational settings, when students are
called on randomly, and in some packet routing protocols in
Internet communications. The waiting time distribution of the
individual tasks (that is, the time between two calls on the same
student) in this case is also exponential.
(iii) In most human-initiated activities task selection is not

random, but the individual executes the highest-priority item on
its list. The resulting execution dynamics is quite different from the
first (i) and second (ii) selection protocols: high-priority tasks will
be executed soon after their addition to the list, whereas low-
priority items will have to wait until all higher-priority tasks are
cleared, forcing them to stay on the list for considerable time
intervals. Below, I show that this selection mechanism, practiced
by humans on a daily basis, is the probable source of the fat tails
observed in human-initiated processes.
I assume that an individual has a priority list with L tasks, each

task being assigned a priority parameter x i, where i ¼ 1, …, L,
chosen from a r(x) distribution. At each time step the agent selects
the highest-priority task from the list and executes it, removing it
from the list. At that moment a new task is added to the list, its
priority x i being again chosen from r(x). This simple model ignores
the possibility that the agent occasionally selects a low-priority item
for execution before all higher-priority items are done—common,
for example, for tasks with deadlines. This can be incorporated by
assuming that the agent executes the highest-priority item with
probability p, and with probability 1 2 p executes a randomly

Figure 2 Heavy-tailed activity patterns in e-mail communications. a, The distribution of
the time intervals between consecutive e-mails sent by a single user over a three-month

time interval, indicating that P(t) < t 21 (the solid line in the log–log plot has slope21).

Although the exponent differs slightly from user to user, it is typically centred around

a ¼ 1. b, The distribution of the time taken by the user to reply to a received message. To
determine t w we recorded the time the user received an e-mail from a specific user, and

the time it sent a response to that user, the difference between the two providing t w. For

consistency the figure shows the data for the user whose inter-event time distribution is

shown in a. The solid line in the log–log plot has slope21. c, A scatter plot showing the
waiting time t w and the size for each e-mail responded to by the user discussed in a, b,
indicating that the file size and response time do not correlate. d, Scatter plot showing the
number of e-mails received and sent by 3,188 users during a three-month interval. Each

point corresponds to a different user, indicating that there are significant differences

between the number of received and responded e-mails. The dashed line corresponds to

n in ¼ n out, capturing the case when the classical queuing models also predict a power

law waiting time distribution (see Supplementary Information), albeit with exponent

a ¼ 3/2.
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Distribution of times between 
consecutive HTML requests to the portal 

by the same user

majority of visits !28%" take place within the first day, de-
caying to only 7% on the second day, and reaching a small
but apparently constant visitation beyond four days #Fig
3!a"$. Given that after a day or two most news is archived,
the long-term saturation of visitation corresponds to direct
search or traffic from outside links.

To understand the origin of the observed decay in visita-
tion, we assume that the portal has N users, each reading the
news document of direct interest for him/her. Therefore, at
every time step each user reads a given document with prob-
ability p. Users will not read the same news more than once;
therefore the number of users who have not read a given
document decreases with time. We can calculate the time
dependence of the number of potential readers to a news
document using

dN!t"
dt

= − N!t"p !1"

where N!t" is the number of visitors who have not read the
selected news document by time t. Equation !1" predicts that
the number of visits !n" in unit time is given by

n!t" = −
dN
dt

= Np exp!− tp" . !2"

Our measurements indicate, however, that in contrast with
this exponential prediction the visitation does not decay ex-
ponentially, but its asymptotic behavior is best approximated
by a power law #Fig. 3!c"$

n!t" % t−! !3"

with !=0.3±0.1, so that while the bulk of the visits takes
place at small t, a considerable number of visits are recorded
well beyond the document’s release time.

Next we show that the failure of the exponential model is
rooted in the uneven browsing patterns of the individual us-
ers. Indeed, Eqs. !1" and !2" are valid only if the users visit
the site in regular fashion such that they all notice almost
instantaneously a newly added news document. In contrast,
we find that the time interval between consecutive HTML
requests by the same visitor is not uniform, but follows a
power-law distribution P!""%"−#, with #=1.2±0.1
#Fig 4!a"$. This means that for each user numerous frequent
downloads are followed by long periods of inactivity, a
bursting, non-Poisson activity pattern that is a generic feature
of human behavior #27,30$ and is observed in many natural
and human-driven dynamical processes #28–39$. In the fol-
lowing we show that this uneven user visitation pattern is
responsible for the slow decay in the visitation of a news
document and that n!t" can be derived from the browsing
pattern of the individual users.

Let us assume that a given news document was released at
time t0 and that all users visiting the main page after the
release read that news. Because each user reads each docu-
ment only once, the visitation of a given document is deter-
mined by the number of new users visiting the page where
the document is featured.

In Fig. 5 we show the browsing pattern for four different
users, each vertical line representing a separate visit to the
main page. The thick lines show for each user the first time
they visit the main page after the studied news document
was released at t0. The release time of the news !t0" divides
the time interval " into two consecutive visits of length t!
and t, where t+ t!=". The probability that a user visits at time
t after the news was released is proportional to the number of
possible " intervals, which for a given t is proportional to the
possible values of t! given by the number of intervals having
a length larger than t. For a user characterized by a power-
law waiting time distribution of exponent a and a minimum
time resolution of tl, the probability of finding a " interval
having a length larger than t is

FIG. 3. !Color online" !a" The visitation pattern of news docu-
ments on a web portal. The data represent an average over 3908
news documents, the release time of each being shifted to day one,
keeping the release hour unchanged. The first peak indicates that
most visits take place on the release day, rapidly decaying after-
ward. !b" The same as !a", but to reduce the daily fluctuations we
define the time unit as one web page request on the portal. !c"
Logarithmic binned decay of visitation of !b" shown in a log-log
plot, indicating that the visitation follows n!t"%!t+ t0"−!, with
t0=12 and !=0.3±0.1 shown as a continuous line on both !b"
and !c".

FIG. 4. !a" The distribution of time intervals between two con-
secutive visits of users. The cutoff for high " !"&106" captures
finite-size effects, as time delays over a week are undercounted in
the month-long data set. The continuous line has slope #=1.2. !b"
The half-time distribution for individual news items, following a
power law with exponent −1.5±0.1.
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where g(x) is a scaling function and x = tR(S) is a scaling
variable. Fig. 2 shows the results of rescaling the different
curves in Fig. 1 by their average rate. We see that the
scaling ansatz of Eq. 3 appears to hold over a wide range,
about seven orders of magnitude in the scaling variable.
This indicates that the same scale invariant dynamics
operates when users send requests of any size. The slight
deviation from data collapse at short times is due to the
finite temporal resolution of our data (one second). There
is an additional deviation due to the diurnal period. The
scaling function g is close to a log-normal distribution:

g(x) =
1√

2πσx
exp(−

(ln(x) − m)2

2σ2
) (4)

with m = −3.41 ± 0.07 and σ = 2.16 ± 0.04, as also
shown in Fig. 2. This feature is also found in numerical
simulations of a stochastic process described later.

The inter-arrival times for all users do not necessarily
give a good estimate for the times that pass between
subsequent requests issued by a single user. To this end
we study the inter-arrival times tui for each user u printing
more than three documents over the one year period. In
the discussion below we set the threshold S = 0.

tui = T u
i+1 − T u

i , where 0 ≤ i ≤ Nu. (5)

Each user’s list of inter-arrival times is concatenated to
determine the probability Pind(t) of single user inter-
arrival times, shown in Fig. 3. This distribution is
approximately a power law over several decades rang-
ing from one minute to about a day, with an exponent
α ≈ 1.3. We also analyze the inter-arrival times for
the busiest single user, which is similar. For compari-
son we show in Fig. 3 an exponential distribution for a
Poisson event process that has the same average rate,
λ = 3.4 × 10−5/sec, as the process of the busiest single
user. A critical system with a power-law distribution of
intervals is a more accurate description of the data than
a Poisson model of print requests.

To decide if inter-arrival times are correlated, we mea-
sured the auto correlation function of waiting times for
single users. The autocorrelation au(τ) at lag step τ is
defined as

au(τ) =
1

Nu − τ

Nu−τ∑

i=1

su
i su

i+τ (6)

where su
i = tui − 1

Nu

∑Nu

j=1 tuj . If the inter-arrival times
are uncorrelated and independent, the arrival process of
individual requests to print can be modeled as a fractal
renewal process [30, 31]. Analyzing data separately for
the three most busy users, we find that the auto cor-
relation function decays as 1/τδ with δ ≈ 0.6. When
the order of the inter-arrival times for an individual user
are shuffled randomly this power law disappears, and the
waiting times become uncorrelated, with au(τ) indepen-
dent of τ for τ ≥ 1. The sequence of inter-arrival times
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FIG. 3: Single user inter-arrival time distribution, averaged
over all users and for the single busiest user. The solid,
straight line indicates a power law distribution, Pind(t) ∼ t

−α

with α = 1.3. For comparison, an exponential distribution
with the same rate as the busiest user is shown as a dashed
curve.

for individual users are correlated over the entire time
span of our data set.

Our data shows that models of criticality are relevant
for describing individual human behavior in the mod-
ern information network. Lacking, at present, a micro-
scopic dynamical model, we compare our observations
with results from a simple stochastic process. Consider
N arrival streams of print requests. In each stream, time
intervals between subsequent requests are independent
random variables chosen from a truncated Pareto distri-
bution. We neglect correlations between intervals. All
intervals have the same probability distribution

Pind(x) =
1

C
kx−1−k where 1 ≤ a ≤ x ≤ b (7)

where a and b are the points where the Pareto distri-
bution is truncated and C is a normalization constant.
We choose the parameter k = 0.3 motivated by the re-
sults in Fig. 3. The short time cut-off a = 2.5 sec
is set to reflect the fact that in some application users
must wait before a subsequent print job can be sent off.
Most students leave after at most 8 years, so b = 8 years
appears to be a reasonable choice. Generating approxi-
mately 73,000 requests in a year fixes the number of users
close to N = 1000.

At the start of the numerical simulation we schedule an
arrival event for each stream according to Eq. 7. Upon
each arrival, the next arrival time is scheduled using the
same distribution. The system takes about 5 years with
the above parameters to reach a statistically stationary
state. As shown in Fig. 2, the inter arrival times mea-
sured in the simulation compare fairly well with the real
data. However the real data has significantly larger vari-
ance.

Distribution of time between 
consecutive print requests

Barabasi, Nature (2005)
Oliveira et al., Nature (2005)

Harder et al., Physica A (2006)Dezso et al., PRE (2006)
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Modeling social interaction networks

• Think in what you do at a conference or meeting...
[0] Bunch of scientists set free in a 

closed space ...

[1] The usually move (walk) 
from one place to another

[2] They start 
interactions 

(talk) when they 
meet somebody

[3] The talking will 
last longer if they 
meet somebody 

“interesting”

[4] At some point, they 
get bored anyway and 

continue walking

[5] From time to time, they leave the room (or stop 
altogether to interact) to go check email, work etc.

Eventually, they will return (or not ...)



Model definition in mathematical terms

• N agents (individuals) in a square box of size L

• Two individuals at a distance less that d can interact (“talk”)

• Agents are characterized by an attractiveness a and and activity r

! a ⇒ “interest” of an agent as seen by others

! r ⇒ how active an agent is

" Random variables with distributions $(a) and %(r)

• Agents perform a biased random walk, depending on its environment: 

2

ai of the agents is a (quenched) variable randomly chosen

from a prefixed distribution η(a), and bounded in the in-

terval ai ∈ [0, 1). Agents perform a random walk biased

by the attractiveness of neighboring individuals. When-

ever an agent intercepts, within a distance smaller than

or equal to d, another individual, they start to interact.

The interaction lasts as far as distance between them is

smaller than d. Crucially, the more attractive an agent

j is (the largest her attractiveness aj), the more interest

she will raise in the other agent i, who will slow down her

random walk exploration accordingly. This fact is taken

into account by a walking probability pi(t) which takes

the form:

pi(t) = 1− max
j∈Ni(t)

{aj}, (1)

where Ni(t) is the set of neighbors of agent i at time t, i.e.
the set of agents that, at time t, are at a distance smaller

than or equal to d from agent i. Hence, the biased ran-

dom walk performed by the agents is defined as follows:

At each time step t, each agent i performs, with proba-

bility pi(t), a step of length v along a direction given by

a randomly chosen angle ξ ∈ [0, 2π). With the comple-

mentary probability 1 − pi(t), the agent does not move.

Thus, according to Eq. (1), if an agent i is interacting

with other agents, she will keep her position in the fol-

lowing time step with a probability proportional to the

appeal of his most interesting neighbor.

Furthermore, the empirical observations of SocioPat-

terns data show that not all the agents involved in a social

event are actually present for its entire duration: Some

agents leave the event before the end, some join it later

after the beginning, and some others leave and come back

several times. Therefore we assume that agents can be in

an active or an inactive state. If an individual is active,

she moves in space and interacts with the other agents;

otherwise she simply rests without neither moving nor

interacting. At each time step, one inactive agent i can
become active with a probability ri, while one active and
isolated agent j (not interacting with other agents) can

become inactive with probability 1 − rj . The activation

probability ri of the individual i thus represents her ac-

tiveness in the social event, the largest the activity ri,
the more likely agent i will be involved in the event. We

choose the activation probability ri of the agents ran-

domly from an uniform distribution ζ(r), bounded in

ri ∈ [0, 1], but we have verified that the model behav-

ior is independent of the activity distribution functional

form (even if we consider a constant activity rate, ri = r
for all agents, we obtain very similar results, see Supple-

mentary Material Figure 1).

Within this framework, each individual performs a dis-

crete random walk in a 2D space, interrupted by inter-

actions of various duration with peers. (The movement

of individuals is implemented in parallel, with all agent

attempting to change position before the pattern of in-
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FIG. 1. (color online) Left: Blue (dark) colored agents are ac-
tive, grey (light) agents do not move nor interact. Interacting
agents, within a distance d, are connected by a link. Right:
The interactions of the agent represented at the center of a
disk of radius d are presented. Each individual is character-
ized by a number representing her attractiveness. The proba-
bility for the central individual to move is p = 1.0−0.6 = 0.4,
since the attractiveness of the inactive agent is not taken into
account.

teractions is recomputed, in order to better mimic the

time resolution of empirical measurements.) The model

is Markovian, since agents do not have memory of the

previous time steps. The full dynamics of the system is

encoded in the collision probability pc = ρπd2, the acti-

vation probability distribution ζ(r), and the attractive-

ness distribution η(a). The latter can hardly be accessed

empirically, and is likely to be in its turn the combina-

tion of different elements, such as prestige, status, role,

etc. Moreover, in general attractiveness is a relational

variable, the same individual exerting different interest

on different agents. Avoiding any speculations on this

point, we assume the simplest case of a uniform distribu-

tion for the attractiveness [26]. Remarkably, this simple

assumption leads to a rich phenomenology, in agreement

with empirical data
1

In the following we will contrast results obtained by

Dataset N T p �∆t� �k� �s�
hosp 84 20338 0.049 2.67 30 1145

ht 113 5093 0.060 2.13 39 366

school 126 5609 0.069 2.61 27 453

sfhh 416 3834 0.075 2.96 54 502

TABLE I. Some properties of the SocioPatterns datasets un-
der consideration: N , number of different individuals engaged
in interactions; T , total duration of the contact sequence, in
units of the elementary time interval t0 = 20 seconds; p, aver-
age number of individuals interacting at each time step; �∆t�,
average duration of a contact; �k� and �s�: average degree
and average strength of the projected network, aggregated
over the whole sequence (see main text).

1 (We have checked numerically that other attractiveness distri-
butions, with a heavy-tailed form, lead to qualitatively similar

• At time t, agent i stays in place with 
probability

• Otherwise, performs a step in a random 
direction

• With probability 1-r, the agent becomes 
inactive, and stops interacting

• If inactive, with probability r becomes 
active and interacts again

qi(t) = max
j∈Ni(t)

{aj},
pmove = 1 - q



Model Results: Statistics of contacts

Modelinghumandynamicsofface-to-face interactionnetworks
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Contribution

We have developed a simple model [1] that reproduces quan-

titatively most of the relevant features of empirical face-to-

face interaction networks, describing social interactions in

human gatherings. The model describes agents which per-

form a random walk in a two dimensional space and are

characterized by an attractiveness whose effect is to slow

down the motion of people around them. The proposed

framework sheds light on the dynamics of human interac-

tions and can improve the modeling of dynamical processes

taking place on the ensuing dynamical social networks.

Gathering Empirical Data: The SocioPatterns Collaboration

The SocioPatterns collaboration [2] recorded data of face-

to-face human interactions in closed gatherings of individu-

als such as schools, museums or conferences. SocioPatterns

deployments measure the proximity patterns of individuals

with a space-time resolution of 1 meter and 20 seconds by

using wearable active radio-frequency identification devices.

Here we consider datasets gathered in several different so-

cial contexts: the European Semantic Web Conference

(“eswc”), a Lyon hospital (“hosp”), the Hypertext conference

(“ht”), the Sociètè Francaise d’Hygiène Hospitalière congress

(“sfhh”) and a high school (“school”).

distinct persons. In other words, if A starts a contact with B at time
tAB, and then starts a different contact with C at tAC, the inter-
contact interval is defined as tAC - tAB. Measuring this quantity is
relevant for the study of causal processes (concurrency) that can
occur on the dynamical contact network, such as for example
information diffusion or epidemic spreading. The inter-contact
intervals determine the timescale after which an individual
receiving some information or disease is able to propagate it to
another individual. Thus, the interplay between this timescale and
the typical timescales of the spreading processes is crucial to
diffusion processes. The probability distributions of inter-contact
events show a broad tail across the three deployments, signaling
the absence of a characteristic timescale (see panel C of Figure 2).
Strikingly, and in contrast with the distributions of pair-wise
contact durations, these distributions expose differences between
deployments. In particular, the distribution of inter-contact
intervals turns out to be broader when short detection ranges

are considered (ISI and SFHH). In the context of spreading
processes this would imply that various ranges of possible
contamination would correspond to different distributions of times
between successive spreading events.
The combination of high resolution and scalability we achieved

allows us to address the crucial problem of the robustness of the
observed distributions. In Figures 3A, S2, S3, we show that the
same distributions are obtained not only across deployments, but
also within a single deployment, across different intervals of time
(from a few hours, to one full day, to the event as a whole).
Figure 3A also displays distributions of contact durations of
individual tags, showing that the observed heterogeneity of contact
durations in the population is present also at the individual level.
Moreover, in experiments involving the tracking of individuals’

behavior, technical difficulties and human factors can both act as
sources of data incompleteness. Participation is voluntary and not
all individuals agree to have their contacts tracked. People who

Figure 1. RFID sensor system and system deployments. A) Schematic illustration of the RFID sensor system. RFID tags are worn as badges by
the individuals participating to the deployments. A face-to-face contact is detected when two persons are close and facing each other. The
interaction signal is then sent to the antenna. B)C)D) Activity pattern measured in terms of the number of tagged individuals as a function of time in
the three deployments: B) ISI refers to the deployment in the offices of the ISI foundation in Turin, Italy, with 25 participants; C) 25C3 to the 25th Chaos
Communication Congress in Berlin, Germany, with 575 participants, and D) SFHH to the congress of the Société Française d’Hygiène Hospitalière,
Nice, France, with 405 participants. Dashed vertical lines indicate the beginning and end of each day. Typical daily rhythms are observed in the office
and conference settings. The ISI deployment allows us to recover the weekly pattern signaled by the absence of activity on the day of Sunday (the
number of persons larger than zero at night indicates the tags left in the offices, easily recognizable from the flat behavior).
doi:10.1371/journal.pone.0011596.g001
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intervals turns out to be broader when short detection ranges

are considered (ISI and SFHH). In the context of spreading
processes this would imply that various ranges of possible
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same distributions are obtained not only across deployments, but
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(from a few hours, to one full day, to the event as a whole).
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individual tags, showing that the observed heterogeneity of contact
durations in the population is present also at the individual level.
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all individuals agree to have their contacts tracked. People who

Figure 1. RFID sensor system and system deployments. A) Schematic illustration of the RFID sensor system. RFID tags are worn as badges by
the individuals participating to the deployments. A face-to-face contact is detected when two persons are close and facing each other. The
interaction signal is then sent to the antenna. B)C)D) Activity pattern measured in terms of the number of tagged individuals as a function of time in
the three deployments: B) ISI refers to the deployment in the offices of the ISI foundation in Turin, Italy, with 25 participants; C) 25C3 to the 25th Chaos
Communication Congress in Berlin, Germany, with 575 participants, and D) SFHH to the congress of the Société Française d’Hygiène Hospitalière,
Nice, France, with 405 participants. Dashed vertical lines indicate the beginning and end of each day. Typical daily rhythms are observed in the office
and conference settings. The ISI deployment allows us to recover the weekly pattern signaled by the absence of activity on the day of Sunday (the
number of persons larger than zero at night indicates the tags left in the offices, easily recognizable from the flat behavior).
doi:10.1371/journal.pone.0011596.g001
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The Attractiveness Model

The model is defined as follow: N agents perform a random

walk in a 2D space of linear size L, with a density ρ = N/L2
.

Whenever two agents intercept, within a distance d, they

start to interact. Each agent i is characterized by his at-

tractiveness or social appeal ai, which represents his power

to raise interest in the others. The attractiveness ai is ran-

domly chosen from a uniform distribution η(a), bounded in

ai ∈ [0, 1[. At each time step t, each agent i moves in a

random direction of a step v, with probability

pi(t) = 1− max
j∈Ni(t)

{aj}, (1)

where Ni(t) is the set of neighbors of agent i at time t, i.e.
those agents at a distance smaller than d from agent i. There-
fore, if an agent is interacting with other individuals, she will

keep her position in the following time step with a probability

proportional to the appeal of his most interesting neighbor.

Furthermore, accordingly to empirical data, we assume that

agents can be in an active (blue in the Figure) or an inactive

(grey) state. If an individual is active, she moves in space

and interacts with the other agents; otherwise she simply

rests without neither moving nor interacting. At each time

step, one randomly chosen inactive agent i can become ac-

tive with a probability ri, while one active and isolated agent

j can become inactive with probability 1 − rj . The activa-

tion probability ri represents the activity of individual i in
the social event, and it is chosen from a uniform distribution

ζ(r), bounded in ri ∈ [0, 1]. The model has been simulated

adopting the parameters v = d = 1, L = 100 and N = 200.
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Conclusions

We presented a simple model of mobile agents that nat-

urally reproduces the social context described by the So-

ciopatterns deployments. The main hypotheses introduced

in the model are: (i) Agents perform a biased random walk

in two-dimensional space; (ii) their interactions are ruled

by an heterogeneous attractiveness parameter; and (iii) not

all agents are simultaneously active in the system. With-

out any data-driven mechanism, and with no explicit as-

sumptions on the agents’ cognition, the model is able to

quantitatively capture most of the properties of the pattern

of interactions between agents. Importantly, results are ro-

bust with respect to variations of the model parameters, the

density ρ and the activity distribution functional form ζ(r),
and they do not depend qualitatively on the nature of the

motion rule, given by Eq. (1).
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Heterogeneity and Burstiness of Human Dynamics
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The bursty dynamics of human interactions is revealed by

the power- law behavior of the distribution of the duration

∆t of the contacts between pairs of agents, P (∆t), and the

distribution of gap times τ between two consecutive conver-

sations involving a common individual, P (τ).
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The distributions P (∆t) and P (τ) of the various sets of em-

pirical data are in excellent agreement with the same dis-

tributions obtained by simulating the attractiveness model.

Moreover, numerical results are robust with respect to vari-

ations of the agent density ρ, as shown in the insets.

From Face-to-face Interactions to Dynamical Networks

Sociopatterns data can be naturally analyzed in terms of

temporally evolving graphs, whose nodes are defined by the

agents, and whose links represent interactions between pairs

of agents. Instantaneous networks are thus formed by iso-

lated nodes and small groups of interacting individuals. In-

tegrating the information of these instantaneous graphs over

a given time window produces an aggregated weighted net-

work, where the weight wij between nodes i and j represents

the total temporal duration of the contacts between agents i
and j, and the strength si =

�
j wij of individual i accounts

for his cumulated time spent in interactions.

The weight distribution P (w) of the various datasets are

broad, showing that the heterogeneity in the duration of in-

dividual contacts persists even when contact durations are

accumulated over longer time intervals. The correlation be-

tween the number of different contacts and the temporal du-

ration of those contacts can be estimated by measuring the

growth of the average strength of nodes of degree k, s(k), as
a function of k.
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We observe a super-linear behavior, s(k) ∼ kα, with α > 1,

which implies that on average the nodes with high degree are

likely to spend more time in each interaction with respect to

the low-connected individuals. Both P (w) (main) and s(k)
(inset) of the aggregated network obtained by simulating the

attractiveness model are nicely compatible with all empirical

data.

A final important feature of face-to-face interactions, also

revealed in different context involving human mobility, is

that the tendency of an agent to interact with new peers

decreases in time. This fact is accounted by a sub-linear

temporal growth of the number of different contacts of a sin-

gle individuals (i.e. the aggregated degree ki(t)), k(t) ∼ tµ,
with µ < 1. The shapes of the different datasets can be col-

lapsed in a single curve by appropriately rescaling the data

as k(t)/k(T ) as a function of t/T , and, remarkably, the at-

tractiveness model is also capable to reproduce the behavior

of k(t).
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Model Results: Topology of the weighted connected 
network
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Contribution

We have developed a simple model [1] that reproduces quan-

titatively most of the relevant features of empirical face-to-

face interaction networks, describing social interactions in

human gatherings. The model describes agents which per-

form a random walk in a two dimensional space and are

characterized by an attractiveness whose effect is to slow

down the motion of people around them. The proposed

framework sheds light on the dynamics of human interac-

tions and can improve the modeling of dynamical processes

taking place on the ensuing dynamical social networks.

Gathering Empirical Data: The SocioPatterns Collaboration

The SocioPatterns collaboration [2] recorded data of face-

to-face human interactions in closed gatherings of individu-

als such as schools, museums or conferences. SocioPatterns

deployments measure the proximity patterns of individuals

with a space-time resolution of 1 meter and 20 seconds by

using wearable active radio-frequency identification devices.

Here we consider datasets gathered in several different so-

cial contexts: the European Semantic Web Conference

(“eswc”), a Lyon hospital (“hosp”), the Hypertext conference

(“ht”), the Sociètè Francaise d’Hygiène Hospitalière congress

(“sfhh”) and a high school (“school”).

distinct persons. In other words, if A starts a contact with B at time
tAB, and then starts a different contact with C at tAC, the inter-
contact interval is defined as tAC - tAB. Measuring this quantity is
relevant for the study of causal processes (concurrency) that can
occur on the dynamical contact network, such as for example
information diffusion or epidemic spreading. The inter-contact
intervals determine the timescale after which an individual
receiving some information or disease is able to propagate it to
another individual. Thus, the interplay between this timescale and
the typical timescales of the spreading processes is crucial to
diffusion processes. The probability distributions of inter-contact
events show a broad tail across the three deployments, signaling
the absence of a characteristic timescale (see panel C of Figure 2).
Strikingly, and in contrast with the distributions of pair-wise
contact durations, these distributions expose differences between
deployments. In particular, the distribution of inter-contact
intervals turns out to be broader when short detection ranges

are considered (ISI and SFHH). In the context of spreading
processes this would imply that various ranges of possible
contamination would correspond to different distributions of times
between successive spreading events.
The combination of high resolution and scalability we achieved

allows us to address the crucial problem of the robustness of the
observed distributions. In Figures 3A, S2, S3, we show that the
same distributions are obtained not only across deployments, but
also within a single deployment, across different intervals of time
(from a few hours, to one full day, to the event as a whole).
Figure 3A also displays distributions of contact durations of
individual tags, showing that the observed heterogeneity of contact
durations in the population is present also at the individual level.
Moreover, in experiments involving the tracking of individuals’

behavior, technical difficulties and human factors can both act as
sources of data incompleteness. Participation is voluntary and not
all individuals agree to have their contacts tracked. People who

Figure 1. RFID sensor system and system deployments. A) Schematic illustration of the RFID sensor system. RFID tags are worn as badges by
the individuals participating to the deployments. A face-to-face contact is detected when two persons are close and facing each other. The
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distinct persons. In other words, if A starts a contact with B at time
tAB, and then starts a different contact with C at tAC, the inter-
contact interval is defined as tAC - tAB. Measuring this quantity is
relevant for the study of causal processes (concurrency) that can
occur on the dynamical contact network, such as for example
information diffusion or epidemic spreading. The inter-contact
intervals determine the timescale after which an individual
receiving some information or disease is able to propagate it to
another individual. Thus, the interplay between this timescale and
the typical timescales of the spreading processes is crucial to
diffusion processes. The probability distributions of inter-contact
events show a broad tail across the three deployments, signaling
the absence of a characteristic timescale (see panel C of Figure 2).
Strikingly, and in contrast with the distributions of pair-wise
contact durations, these distributions expose differences between
deployments. In particular, the distribution of inter-contact
intervals turns out to be broader when short detection ranges

are considered (ISI and SFHH). In the context of spreading
processes this would imply that various ranges of possible
contamination would correspond to different distributions of times
between successive spreading events.
The combination of high resolution and scalability we achieved

allows us to address the crucial problem of the robustness of the
observed distributions. In Figures 3A, S2, S3, we show that the
same distributions are obtained not only across deployments, but
also within a single deployment, across different intervals of time
(from a few hours, to one full day, to the event as a whole).
Figure 3A also displays distributions of contact durations of
individual tags, showing that the observed heterogeneity of contact
durations in the population is present also at the individual level.
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The Attractiveness Model

The model is defined as follow: N agents perform a random

walk in a 2D space of linear size L, with a density ρ = N/L2
.

Whenever two agents intercept, within a distance d, they

start to interact. Each agent i is characterized by his at-

tractiveness or social appeal ai, which represents his power

to raise interest in the others. The attractiveness ai is ran-

domly chosen from a uniform distribution η(a), bounded in

ai ∈ [0, 1[. At each time step t, each agent i moves in a

random direction of a step v, with probability

pi(t) = 1− max
j∈Ni(t)

{aj}, (1)

where Ni(t) is the set of neighbors of agent i at time t, i.e.
those agents at a distance smaller than d from agent i. There-
fore, if an agent is interacting with other individuals, she will

keep her position in the following time step with a probability

proportional to the appeal of his most interesting neighbor.

Furthermore, accordingly to empirical data, we assume that

agents can be in an active (blue in the Figure) or an inactive

(grey) state. If an individual is active, she moves in space

and interacts with the other agents; otherwise she simply

rests without neither moving nor interacting. At each time

step, one randomly chosen inactive agent i can become ac-

tive with a probability ri, while one active and isolated agent

j can become inactive with probability 1 − rj . The activa-

tion probability ri represents the activity of individual i in
the social event, and it is chosen from a uniform distribution

ζ(r), bounded in ri ∈ [0, 1]. The model has been simulated

adopting the parameters v = d = 1, L = 100 and N = 200.
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Conclusions

We presented a simple model of mobile agents that nat-

urally reproduces the social context described by the So-

ciopatterns deployments. The main hypotheses introduced

in the model are: (i) Agents perform a biased random walk

in two-dimensional space; (ii) their interactions are ruled

by an heterogeneous attractiveness parameter; and (iii) not

all agents are simultaneously active in the system. With-

out any data-driven mechanism, and with no explicit as-

sumptions on the agents’ cognition, the model is able to

quantitatively capture most of the properties of the pattern

of interactions between agents. Importantly, results are ro-

bust with respect to variations of the model parameters, the

density ρ and the activity distribution functional form ζ(r),
and they do not depend qualitatively on the nature of the

motion rule, given by Eq. (1).
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Heterogeneity and Burstiness of Human Dynamics
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The bursty dynamics of human interactions is revealed by

the power- law behavior of the distribution of the duration

∆t of the contacts between pairs of agents, P (∆t), and the

distribution of gap times τ between two consecutive conver-

sations involving a common individual, P (τ).
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The distributions P (∆t) and P (τ) of the various sets of em-

pirical data are in excellent agreement with the same dis-

tributions obtained by simulating the attractiveness model.

Moreover, numerical results are robust with respect to vari-

ations of the agent density ρ, as shown in the insets.

From Face-to-face Interactions to Dynamical Networks

Sociopatterns data can be naturally analyzed in terms of

temporally evolving graphs, whose nodes are defined by the

agents, and whose links represent interactions between pairs

of agents. Instantaneous networks are thus formed by iso-

lated nodes and small groups of interacting individuals. In-

tegrating the information of these instantaneous graphs over

a given time window produces an aggregated weighted net-

work, where the weight wij between nodes i and j represents

the total temporal duration of the contacts between agents i
and j, and the strength si =

�
j wij of individual i accounts

for his cumulated time spent in interactions.

The weight distribution P (w) of the various datasets are

broad, showing that the heterogeneity in the duration of in-

dividual contacts persists even when contact durations are

accumulated over longer time intervals. The correlation be-

tween the number of different contacts and the temporal du-

ration of those contacts can be estimated by measuring the

growth of the average strength of nodes of degree k, s(k), as
a function of k.
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We observe a super-linear behavior, s(k) ∼ kα, with α > 1,

which implies that on average the nodes with high degree are

likely to spend more time in each interaction with respect to

the low-connected individuals. Both P (w) (main) and s(k)
(inset) of the aggregated network obtained by simulating the

attractiveness model are nicely compatible with all empirical

data.

A final important feature of face-to-face interactions, also

revealed in different context involving human mobility, is

that the tendency of an agent to interact with new peers

decreases in time. This fact is accounted by a sub-linear

temporal growth of the number of different contacts of a sin-

gle individuals (i.e. the aggregated degree ki(t)), k(t) ∼ tµ,
with µ < 1. The shapes of the different datasets can be col-

lapsed in a single curve by appropriately rescaling the data

as k(t)/k(T ) as a function of t/T , and, remarkably, the at-

tractiveness model is also capable to reproduce the behavior

of k(t).

10
0

10
1

10
2

10
3

10
4

t

10
0

10
1

10
2

k
(t

)

k(T)=27 
k(T)=45
k(T)=61

10
-3

10
-2

10
-1

10
0

t/T

10
-1

10
0

k
(t

)/
k

(T
)

hosp
ht
sfhh
school
model



Conclusions

• Social networks are better characterized with an additional temporal dimension

• Recent advances allow the easy and cheap gathering of large-scale data on dynamical 
social networks

! The SocioPatterns projects

• The statistical analysis of SocioPatterns data allows to obtain novel information about 
human behavior

! Long-tailed interaction distributions, burstiness, etc

• We have developed a simple model that can explain the basic features of human social 
face-to-face interactions as represented by the SocioPatterns data

• Realistically inspired:

! People walk and stop to talk

! The more interesting the partner, the larger the tendency to keep talking

• Model with simple simple parameters and no tuning

• Results qualitatively independent of the functional parameters $(a) and %(r)

• Very good fitting between model results and empirical data

• Opens the door to a better understanding of social behavior and social interactions
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... and see you at the poster 
session !!


