

Product graph based inexact subgraph matching and its application in symbol spotting in graphical documents

Anjan Dutta[†], Josep Lladós[†], Horst Bunke^{††} and Umapada Pal^{†††}

[†]Centre de Visió per Computador, Universitat Autònoma de Barcelona, Barcelona, Spain ^{††}Institute of Computer Science and Applied Mathematics, Universität Bern, Bern, Switzerland

††† Computer Vision and Pattern Recognition Unit, Indian Statistical Institute, Kolkata, India

February 21, 2014

Symbol spotting

- Symbol spotting can roughly be defined as locating a given query symbol in a large graphical document or a collection of graphical document.
- The problem of symbol spotting in graphical documents can trivially be formulated as a subgraph matching problem.

Subgraph matching

- Subgraph matching can trivially be formulated as an integer quadratic programming (IQP) which is an NP-hard problem.
- Many of the available subgraph matching algorithms focus on approximating the matching part like approximate maximal clique finding, linear programming, continuous relaxation etc.
- Most of them work with pairwise similarities, which are not robust in many cases especially when context informations are involved like graph.
- Incorporation of contextual information in similarity measurement adds more discrimination and able to better approximate the matching part. This is the main motivation of the work.

Higher order contextual similarities

- Obtaining contextual information with the walk based propagation of pairwise similarities in tensor product graph (TPG).
- A TPG is a triplet $G_X = (V_X, E_X, W_X)$ where one can assign pairwise similarities as weights on the nodes and the edges.

Higher order contextual similarities (contd.)

- Given the pairwise similarities, one can perform random walks from node to node considering those weights as the plausibilities.
- Add the weighted walks originated from a particular node.
- Higher order contextual similarity implies higher chance of constituting a pair of matched nodes.

Higher order contextual similarities (contd.)

- The contextual similarities can be obtained by simple algebraic operation as follows:
- Random walks:

$$W_X^{CS} = (\mathbf{I} - \lambda W_X)^{-1} \mathbf{1}$$

• Backtrackless walks:

$$W_X^{CS} = (1 - \lambda^2)(\mathbf{I} - \lambda W_X + \lambda^2 Q_X)^{-1} \mathbf{1}$$

where
$$Q_X = \operatorname{diag}(\operatorname{diag}(W_X^2) - 1)$$

Constrained optimization problem

- We formulate subgraph matching as a node, edge selection problem from the TPG.
- We construct a constrained optimization problem out of the contextual similarity values:

$$\max f x'$$
$$Ax \le b$$
$$x \in [0, 1]$$

Outline

Experimental results

Inexact graph matching (symbol spotting).

Figure: Matchings: bed.

Experimental results (contd.)

Figure: Ranked results: bed.

Figure: Ranked results: door1.

Conclusions

- Contextual similarities instead of pairwise similarities, contextual similarities encode higher order intrinsic relations between objects. Better discriminations.
- Subgraph matching as a node, edge selection problem in TPG, constrained optimization problem.
- Reason to visit the poster: details of the methodologies, results, discussions etc. Exchange ideas, feed back etc.

Dual graph

